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Electrons in logarithmic potentials I. Solution of the 
Schrodinger equation 

F Gesztesyi and L Pittner 
Institut fur Theoretische Physik, Universitat Graz, A-8010 Graz, Austria 

Received 12 August 1977, in final form 3 November 1977 

Abstract. The asymptotic behaviour of the general solution of Schrodinger's equation for 
an electron in a logarithmic potential is derived from stability theorems, and the energy 
spectrum is investigated in both the attractive and repulsive cases. The general solution is 
represented by an uniformly convergent perturbation expansion which may be used to 
calculate electron interferences. 

1. Introduction 

The Fresnel biprisma experiment with light may also be performed with electrons, if 
the optical lens is replaced by some suitable electric field. In this way electron 
interferences can be observed without using any intermediate crystal (Mollenstedt and 
Duker 1956, Donati er a1 1973, Merli et a1 1976). Such an electric field can be 
generated by means of a cylindrical capacitor consisting of a hollow cylinder and a 
central straight wire. The electric field inside the cylinder can be derived from the 
static potential 

where a and b denote the radii of the wire and hollow cylinder respectively. 
To calculate the electron interferences the corresponding (non-) relativistic wave 

equation must be solved under suitable boundary conditions. To gain an insight into 
the mathematical structure of these wave equations it is useful to extend the 
logarithmic behaviour of the potential to the whole space, namely to consider the 
Schrodinger and Dirac equations with the potential: 

V(r) = E ln(r/b), O<r<oo. (1.2) 
In this paper we analyse the Schrodinger equation. First we state the self-adjoint- 

ness of the Schrodinger operator, and then we consider the family of radial operators 
via the usual expansion with respect to the angular momentum eigenvalues. 
Subsequently we specify certain fundamental systems of asymptotic solutions as r + 0 
and r + a ,  on the basis of stability theorems about linear differential equations. 
Accordingly we characterise the spectrum of the Schrodinger equation and approxi- 
mate the electron energy levels by means of connection formulae for our asymptotic 
solutions. 

i' Supported by Fonds zur Forderung der wissenschaftlichen Forschung in Osterreich, Projekt Nr. 3225. 
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Finally we derive a very transparent perturbation expansion of the general solution 
of each radial Schrodinger equation, and prove its uniform convergence on each 
compact subset of the half-line [0, +CO). 

In the second paper the Dirac operator with the logarithmic potential V is 
considered, and the Dirac equation is solved rigorously by methods similar to our 
treatment of the Schrodinger problem. We show that remarkable differences between 
these two equations of motion occur, concerning the asymptotic behaviour of their 
solutions and the spectral properties. These differences are classified with respect to 
their origin from relativistic kinematics, the electron spin, and the possible existence 
of positrons. 

Our following efforts will be devoted to the restriction of these general solutions by 
suitable boundary conditions at the radii a and 6, in order to verify theoretically the 
results of electron interference experiments which have been performed by the 
authors mentioned previously. 

2. Self-adjointness and angular momentum expansion 

In the Hilbert space L2(R2) we consider the formal differential operator 

T = - A +  V(r) (2.1) 

with the previously defined logarithmic potential V. This potential is of Stummel type 
(Stummel 1956), and therefore the following statement holds (Ikebe and Kat0 1962). 

Theorem 2.1. The restriction TIC? (R2) is essentially self-adjoint. 

We decompose the Hilbert space in the usual manner by means of polar coor- 
dinates r and 4, 

L2(R2)  = L2(R’, r dr) 0 L2([0,277], d4).  ( 2 . 2 )  

On functions of the product form f ( r ) T ( 4 ) ,  the formal differential operator T acts as 

where the Laplace-Beltrami operator B = d2/d4’, the restriction BICm([O, 2 ~ 1 )  of 
which is essentially self-adjoint under periodic boundary conditions, possesses the 
purely discrete spectrum { - 1’; I = 0, 1, 2, . . .}. Thus we obtain in &(IT!+, r dr)  the 
formal differential operators 

which can be transformed unitarily to the family IT ;  I = 0, 1,2,  . . .} in L2(Rc,  dr), 

(2.4) 

The classical motion generated by the effective potential V(r)+ 12r-’ is complete 
near infinity for I = 0, 1,2,  . . . ; in the repulsive case ( E  < 0) it is complete near zero for 
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1 = 0 ,1 ,2 ,  , . . , but in the attractive case ( E  >0) only for 1 = 1 ,2 ,3 ,  . . . (Reed and 
Simon 1975). 

Within the framework of quantum mechanics, the radial potentials U/ are in the 
limit point case near infinity for 1 = 0 ,1 ,2 ,  . . . , and in the limit point case near zero for 
1 = 1 , 2 , 3 , .  . . ; the potential U0 is in the limit circle case near zero (Reed and Simon 
1975, Dunford and Schwartz 1963). Therefore the restrictions TlIC? (R+) are 
essentially self-adjoint in L2(R+, dr) for 1 = 1 , 2 ,  3, . . . ; especially we must take the 
Friedrichs extension of TolC? (R+) to obtain equivalence with the essentially self- 
adjoint operator TIC? (R2). 

3. Asymptotic solutions and spectral properties 

The Schrodinger equation 

is solved by the product ansatz : 

if the radial differential equation 

is satisfied. 

perform the transformation 
In order to solve these radial equations asymptotically near zero and infinity, we 

and obtain the linear differential equations 

the general solutions of which are entire functions. Note that 

sgn(Ax)= sgn(V(r)-E), r>O, (3.6) 

and that r + 0 means x + - CO, and r + +CO means x + + W. Concerning the physical 
meaning of solutions, bound states are defined by the condition 

+CC 

e** dx/yl(x)12 < CO. (3.7) 

We use the conventional notation of asymptotic approximation, namely, for 

I, dr/gI(r)l2 < CO, or equivalently 

complex-valued functions f and g on the real line, 

f (x)-g(x)asx+ fa means f(x)=g(x)(l+o(l)). (3.8) 

Standard theorems about the stability of linear differential equations (Coppel 
1965, Olver 1974) can now be applied to analyse the asymptotic behaviour of 
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fundamental systems of solutions of equations (3.5): 

and (3.11) 

y ;  (x) - i i( - hr(x))+'l4 exp( * i [ d(( - h~( t ) ) "~ )  as x + + for A < 0 ,  

with hl(x)=/'+Ax e", for l = O ,  1 , 2 , .  . . . 
For 1 = 1 , 2 , 3 , .  . . , only one of these two linearly independent solutions (3.9) 

enables us to satisfy condition (3.7), namely yI(x)-e+lx as x + -CO;  the solution 
yo(x) - 1 as x + - co especially corresponds to the Friedrichs extension of TolCo" (R'). 

As x + +CO, this asymptotic behaviour for 1 = 0, 1 ,2 ,  . . . allows bound states or 
enforces unphysical solutions in case of attraction (A > 0), and permits scattering states 
in case of repulsion (A < 0). 

To evaluate the integrals in the exponents, we use the error function (Abramowitz 
and Stegun 1972) 

(3.12) 

in the attractive case (A > 0) we obtain by partial integration 

[ d((ho([))'/2 = (ho(x))'/2 + $(.rrA)'/'@(ix 'Iz), x 2 0 ,  (3.13) 

and further by binomial expansion 

[ dt(h&))'/2 = J x  dt(hO([))'/' + O(constant) f o r 1 = 1 , 2 , 3  , . . . ,  x a 0 .  
0 

(3.14) 

In the repulsive case (A < 0 )  we may proceed similarly, and by an asymptotic expan- 
sion of the error function we obtain finally the fundamental system of solutions: 

y,(x)= (Ax e2x)-r/4 exp[*(Ax)'/'e"(l - (2~) -~+0(x - ' ) ) ] ( l  +o(l)) 

and (3.15) 
y;(x)= *(Ax exp[*(Ax)'/2 ex(1-(2x)-'+O(x-'))](1 +o(l))  

a s x +  +co,forI=O, 1 , 2 , .  . . . 
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These asymptotic approximations may be rewritten in terms of fundamental 
systems of asymptotic solutions of the radial equations (3.3): 

gl(r) - ri*‘ 

go(r)-rr’/’ or r1’2 ln(rl6) as r+O;  (3.16) 

for 1 = 1 , 2 , 3 , .  . . , 

(3.17) 

This asymptotic behaviour indicates the structure of the energy spectrum. Indeed 
the dependence of the potential V(r) on large r, and especially the non-oscillating 
character of the radial equations near zero and infinity imply (Dunford and Schwartz 
1963, Weidmann 1967) the following theorem. 

Theorem 3.1. For 1 = 0, 1,2,  . . . , in the case of attraction (E > O )  the radial operators 
in equations (3.3) are bounded from below and their essential spectra are empty, 
whereas in the case of repulsion (E < 0) the spectra of these operators are continuous 
and cover the whole real line. 

This theorem tells us that in the case of attraction only isolated eigenvalues of 
finite multiplicities occur, but it contains no information about their distribution over 
the real axis. To get some feeling about their location we apply the semi-classical 
approximation method, which yields exact results for both the harmonic osciliator and 
the hydrogen atom. For this purpose we introduce the action integral 

(3.18) 

where 1 denotes the classical angular momentum, and rl, rz are the classical turning 
points defined by the zeros of the function r2 W&), r 0. The desired approach then 
follows from the Bohr-Sommerfeld quantisation rule: 

Ir = ( n  + l)T, l , n = 0 , 1 , 2  , . . . .  (3.19) 

Inserting our logarithmic potential we calculate especially 
b e y  

IO = 5, dr[E - E 1n(r/b)]’I2 =46(7 r~)~”  e’, E >O,  (3.20) 

and approximate the s-state energy levels by 

(3.21) 

This heuristic consideration can be confirmed by means of connection formulae for 
solutions of linear differential equations (Olver 1974). The discrete eigenvalues of 
equations (3.5) with A > O  are determined rigorously by the asymptotic relation 

jxx, 6 x ( - l Z - A x  e2x)1/2+O(A-1/2)= ( n  +$)T, n =o, 1 , 2 , .  . . , 1 =  1 , 2 , 3 , .  . . , 
(3.22) 
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with xl,x:! denoting the two zeros of lZ+Ax e2', x ER.  Via the transformation (3.4) 
this relation turns out to be just the quantisation rule (3.19). 

4. Uniformly convergent perturbation expansion 

In this section we represent the general solution of equation (3.5) by some suitable 
series of exponential polynomials. The most convenient ansatz for such an expansion 
is suggested partly by the asymptotic behaviour (3.9) of these solutions. 

Theorem 4. I. The regular differential equation 

($- I 2, Y/(X) = AX eZxy1(x), XEC, l = O ,  1 , 2 , .  . , , (4.1) 

is solved by the convergent series 
00 

y1(x)=efX c A "  eZnxpn,r(X), XEC, 
n = O  

with the polynomials pn,l of degree n defined recursively by 

The infinite series (4.2) converges uniformly on each compact subset of C, and it 
converges uniformly on the negative real line. Therefore 

lim yl(x) e-'" = 1, I = O ,  1 , 2 , .  . . 
x -, -a 

(4.4) 

The first step of this recursion yields 

Pl,f(x)= x-- 2 + 1  )[4(1 +z)J-I ,  XEC, 1 = 0 , 1 , 2 , . .  . . (4.5) i 2(1+1) 

Proof. Write the polynomials pn,l as 

n, 1 = 0, 1 , 2 ,  . . ( ) - C ( n J )  
n.1 X - Y x ,  

u = o  
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This linear system of equations can be converted to 

1 2 k + 1  c:k.O- , A k d ) )  . . .), 
4(k + l ) ( k  + 1 + l { -2(k  + I)k 4 k ( k  + I )  + 

k = 2 ,  3 , .  . . , n. 

By induction with respect to k these coefficients can be estimated rather roughly as 

+ n c f , f )  < lcfi! 1 s ncn , C ( n , l )  n-1 < O ,  n s l ;  
Q(n - l)Icf?] I c c,,:*, ( n  1 )  

(n.0 

n 3 2 ;  (4.9) 

by means of the inequality 

n !  
( n  - k)! '  i- s- k = 1 , 2  , . . . ,  n. 

v = k  (v - k ) !  

Thus we obtain the result 

The corresponding majorant with respect to the series (4.2), 
UD 

m(x>= [($lhI)e2"(2+Ixl)lnln!, X E C ,  
n=O 

(4.10) 

(4.11) 

(4.12) 

converges uniformly on each compact subset of @, and also on the negative real axis. 
This completes the proof. 



686 F Gesztesy and L Pittner 

The infinite series 
00 

pl(x)=e-" 1 A "  e2"xpfl,r(x), X E C ,  1 = 1 , 2 , 3  , . . . ,  (4.13) 
n =O 

with polynomials pn,l defined by the recursion 

is also uniformly convergent on each compact subset of C and on the negative real 
line, as can be proved in quite the same manner as theorem 4.1. Therefore the series 
(4.13) represents the solution on C of equation (4.1) with the limit 

+ix - lim jjl(x)e - 1, l = l , 2 , 3  ) . . . .  
x+--Oc 

Obviously the two solutions yl and j j l  are linearly independent. 

gl(r) = ex'2yl(x) 

Again in terms of the polar coordinate r, the perturbation expansion 

(4.15) 

with the above defined polynomials pn,l of degree n, 

(4.17) 

converges uniformly on each compact subset of the non-negative real line ( r  3 0); the 
solution j$  may be rewritten similarly in terms of the radius r. These expansions will 
enable us to compute the electron interferences quoted in the introduction, of course 
only in the non-relativistic limit. 
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